Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
نویسنده
چکیده
In regular statistical models, the leave-one-out cross-validation is asymptotically equivalent to the Akaike information criterion. However, since many learning machines are singular statistical models, the asymptotic behavior of the cross-validation remains unknown. In previous studies, we established the singular learning theory and proposed a widely applicable information criterion, the expectation value of which is asymptotically equal to the average Bayes generalization loss. In the present paper, we theoretically compare the Bayes cross-validation loss and the widely applicable information criterion and prove two theorems. First, the Bayes cross-validation loss is asymptotically equivalent to the widely applicable information criterion as a random variable. Therefore, model selection and hyperparameter optimization using these two values are asymptotically equivalent. Second, the sum of the Bayes generalization error and the Bayes cross-validation error is asymptotically equal to 2λ/n, where λ is the real log canonical threshold and n is the number of training samples. Therefore the relation between the cross-validation error and the generalization error is determined by the algebraic geometrical structure of a learning machine. We also clarify that the deviance information criteria are different from the Bayes cross-validation and the widely applicable information criterion.
منابع مشابه
A widely applicable Bayesian information criterion
A statistical model or a learning machine is called regular if the map taking a parameter to a probability distribution is one-to-one and if its Fisher information matrix is always positive definite. If otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated b...
متن کاملBayesian Cross Validation and WAIC for Predictive Prior Design in Regular Asymptotic Theory
Prior design is one of the most important problems in both statistics and machine learning. The cross validation (CV) and the widely applicable information criterion (WAIC) are predictive measures of the Bayesian estimation, however, it has been difficult to apply them to find the optimal prior because their mathematical properties in prior evaluation have been unknown and the region of the hyp...
متن کاملEquations of states in singular statistical estimation
Learning machines that have hierarchical structures or hidden variables are singular statistical models because they are nonidentifiable and their Fisher information matrices are singular. In singular statistical models, neither does the Bayes a posteriori distribution converge to the normal distribution nor does the maximum likelihood estimator satisfy asymptotic normality. This is the main re...
متن کاملAn objective prior that unifies objective Bayes and information-based inference
There are three principle paradigms of statistical inference: (i) Bayesian, (ii) information-based and (iii) frequentist inference [1, 2]. We describe an objective prior (the weighting or w-prior) which unifies objective Bayes and information-based inference. The w-prior is chosen to make the marginal probability an unbiased estimator of the predictive performance of the model. This definition ...
متن کاملAsymptotic Equivalence between Cross-Validations and Akaike Information Criteria in Mixed-Effects Models
For model selection in mixed effects models, Vaida and Blanchard (2005) demonstrated that the marginal Akaike information criterion is appropriate as to the questions regarding the population and the conditional Akaike information criterion is appropriate as to the questions regarding the particular clusters in the data. This article shows that the marginal Akaike information criterion is asymp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010